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Abstract--The centrifugal separation of a mixture of particles and fluid in an axisymmetric 
container is examined. The flow consists of three distinct regions--mixture, sediment and purified 
fluid--with Ekman boundary layers at the interfaces and walls. In the settling process, the mixture 
and pure fluid acquire retrograde and prograde rotations relative to the tank. This flow pattern, and 
the shape and locus of the interface which are easily determined, provide another simple means to 
compare mixture theory and experiment. It is shown that when the Coriolis force is important, the 
pure fluid layer on the "outwardly" inclined wall is not thin. Moreover the interface between the 
mixture and the pure fluid is not perpendicular to the centrifugal force. Both features contrast those 
of the gravitational Boycott effect. As a consequence, there is no obvious enhancement of settling due 
to geometrical configuration. 

1. I N T R O D U C T I O N  

A rotating axisymmetric container of rather arbitrary shape, figure 1, is filled with a 
homogeneous mixture of fluid and particles which constitute a volume fraction ai. The 
system is assumed initially to be in a state of solid body rotation. Subsequently the 
centrifugal force causes the mixture to separate into rigidly rotating components of purified 
fluid and particle sediment of volume fraction c~M. 

A much simplified analysis of this ~oblem~, Greenspan & Ungarish (1985), was based on 
certain plausible assumptions about the viscous boundary layers. The major conclusion was 
that when the Coriolis force is important features which typify the gravitational Boycott 
effect do not occur, i.e. geometrical shape cannot then enhance separation. Herea  much 
more stringent examination of the Ekman layers is undertaken which in the main supports 
the earlier findings but also leads to some unexpected and experimentally verifiable results. 
This makes possible another assessment of the applicability and accuracy of the mixture 
theory in circumstances for which it was not specifically designed. 

2. F O R M U L A T I O N  

It is assumed, and confirmed a pos ter ior i ,  that the fluid at any time is partitioned into 
three regions: the mixture surrounded by a sediment layer adjacent to one wall and a zone of 
pure fluid at the other, figure 2. This reflects the fact that a solid particle will either "fall" to 
or from a solid boundary wherever the local centrifugal force is not tangent to the wall of the 
container. 

Solely for reasons of algebraic simplicity, the sediment layer is taken here to be negligibly 
thin (which implies a fairly dilute mixture). However, the variable widths of the other two 
regions are sufficiently large most of the time for the corresponding Ekman number of each, 
E ~ v / f l H  2, to be very small (here fl is the angular velocity of the container, H is the width of 
the layer and v is the kinematic viscosity). In essence, this means that boundary layer theory 
is applicable because the principal effects of shear at walls and interfaces occur only in the 
Ekman layers. Some of the other assumptions and approximations are: 

1. Gravity is neglected compared to the centrifugal force. 
2. The particle and fluid densities are nearly the same. 
3. The mixture is a Newtonian fluid with an effective viscosity that depends only on the 

volume fraction a. 
4. Ekman layers on all surfaces form instantly. 
5. The Ekman layer thickness is much larger than the diameter of a particle. 
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Figure 1. Cross section of an axisymmetric container. 

A dimensionless notation is used in which the scales for distance, velocity and time are, 
respectively, the radius of the container, to; the Stokes settling velocity in a centrifugal force 
field, U* = (2 /9) (a2 /vc) ( [po  - pc]/Pc)fl2ro; and the settling time ro/U*.  Subscripts C, D 
refer to the continuous and discrete phases, a is the radius of the dispersed particle and p the 
density. 

The dimensionless parameters that appear are the density ratio 

PD - -  P c  
= ; [ 2 . 1 ]  

Pc 

the Ekman number 

the particle Taylor number, 

Vc , 
E = ~f~r---5, [2.2] 

2 f~a 2 
/3 = - - -  [2.3] 

9 vc 

which measures the particle radius divided by the thickness of the Ekman layer and is 
assumedly, but not necessarily, small. The equations of mixture theory governing mass and 
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Figure 2. Separation of a mixture showing three regions pure fluid, mixture and sediment, 
with Po > Pc. 
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momentum conservation for incompressible constituents are then: 

o t  + v • o ,  

V . j  •0, 

[2.4] 

[2.5] 

where the particle and volume fluxes are given by 

a(1 - a) 
j o f f i a q o f f i a q +  1 + E a  qR, [2.6] 

j f f i a q o +  (1 - a ) q c f f i q -  
~a(l - a) 

1 q-- EO~ 

[ )] (1 + , a )  2/c x q +  1¢[/~ ~ - + ' ~ V q ' q  + ( V x q )  x q  

S 

qR; [2.7] 

a(1 - a)(1 + e) 
1 +~ot  

q~qR, [2.8] 

Here q is the mass velocity of the mixture measured in the cylindrical coordinate system 
rotating with fl k and s ffi ~/I ~ I. The reduced pressure p includes that part of the centrifugal 
force expressible as gradient. The constifutive laws adopted for the relative velocity qR and 
stress ~ are: 

qR = qo - q c  ffi s D ( a ) r ~  [2.91 

where D(a)  is an empirically established rule, as for example that given by Ishii & 'Chawla 
(1979) 

D(a)  ffi ( 1 - a ) ( 1 -  a Y 5 " " ;  
otu ] 

~ ~(a)(Vq + (Vq) ÷) + A(a)V • q [, 

[2.101 

[2.11] 

and 

(1 - a )  
# ( a )  D ( a )  [2.121 

(It will not be necessary to specify A(a); this term could also be included in the definition of 
the mixture pressure.) 

The boundary condition at the wall bordering purified fluid where a ffi 0, is simply q E 0. 
Since the extremely viscous sediment layer is assumed to be negligibly thin, it is in effect just 
a wall coating. To good approximation then, the no-slip condition applies to the flow in the 
mixture layer at the wall where sediment accumulates as well as the normal flux condition 
j • h = 0. The join conditions at the interface 

z = S ( r ,  t )  [2.13] 

that separates the pure fluid from the mixture are the continuity of mass flux, tangential 
stress and normal pressure. These derive from the conservation of mass and momentum 
across the surface, which is actually a kinematic shock, and the no-slip condition applied 
there to the velocity, q. The relevant equations are given later in order to take the boundary 
layer approximation into account. 
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3. A N A L Y S I S :  S L O W  S E T T L I N G  

Consider the separation of an almost neutrally buoyant mixture for which the parameter 
is very small. For definiteness take t to be positive so that po > Pc, and let H be the typical 

height of the container with H / r  o = 0(1). Since h = E1/2/H¢~ is the ratio of the separation 
and spin-up times, 1 << )~ means that separation is a relatively slow and long process. 
Similarly, with ¢ = cE ~/2 comparatively fast or slow separative processes can be studied by 
setting the magnitude of c, or c~3. Only the case c = 0 is presented here in any detail although 
some results for nonzero c are quoted later. 

Perturbation expansions of the basic equations of motion in powers of ¢ yield as the lowest 
order nonlinear theory 

V . q = 0 ,  

1 
2k  x q = - V p  + -~ otr? - E#(o t )V  x X7 x q, 

ot, + V • (otq + ot(1 - ot)qR) = 0, 

[3.11 

[3.21 

[3.31 

with 

qn = r D(ot)~'. [3.41 

The initial state is one of ianiform and constant volume fraction, ot(0) = a,, and it follows 
from [3.3] that along chara_cteristic paths 

dot 
- -  = -2ot(1 - ot)D(ot). [3.5] 
dt 

Thus the volume fraction in the m i x t u r e  region is everywhere a function of time only 

a = a ( t )  [3.6] 

(which for a dilute mixture is a - o t i e - 2 ' ) .  This is an important simplification because it 
allows the remaining equations to be solved using the standard boundary layer theory of 
rotating fluids. In this procedure, the Ekman layers at each wall and on either side of the 
interface are analyzed to determine the equivalent boundary conditions that apply to the 
"inviscid" motion in regions bordered by the viscous layers. (Note that [3.6] justifies the 
form of the shear terms in [3.2].) 

According to [3.5], the volume fraction a is a constant or a known function of time only, 
in each of the different regions. The same is obviously true of the viscosity coefficient #(a) in 
[3.2] where the now conservative buoyancy force, (1~13)all" = ~7(a/213)r 2, may be combined 
with the pressure gradient. Since time is essentially a parameter, the basic equations [3.1] 
and [3.2] are exactly those governing the flow of incompressible rotating fluids. The results 
of that theory, see Greenspan (1968) especially section 2.17, are directly applicable if proper 
care is exercised to account for the different viscosities of the mixture and purified fluid. We 
make use of the formula for the normal velocity of the inviscid, interior flow at a surface with 
a tangential velocity Vw and at which there is a slow normal flux of magnitude Et /2M:  

f 1 h .  k -1/2)] q . h ~ - E  1/ M - ~ h . V × ( { h × ( q - V w ) + ~ ( q - V , , ) } l h . k l  . [3.7] 

Here h is the unit normal to the boundary which points out of the fluid and E must be 
interpreted as necessary to include the factor t~(a). The interface between mixture and 
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purified fluid is viewed as such a "wall" and the unknown values of M and Vw are determined 
to satisfy the join conditions there which relate to the conservation of mass and momentum 
and the no-slip velocity constraint. (Since ¢ is small, the mass-averaged velocity q is 
continuous across the shock but qc and qD are not and in general change values from one side 
to the other.) 

From the analysis of the boundary layer, the continuity of total pressure and tangential 
shear stress across the interface imply that 

~ r  A 
qi - qu = - ~-~0, [3.8] 

and 

#t /2 (q l  - Vw)  + (qu  - Vw)  m 0,  [3.91 

where I, II designate variables in the mixture and the purified fluid. Figure 3, a cross section 
of the container, shows these regions and the (four) Ekman layers at the walls and on either 
side of the interface z - S ( r ,  t). (The sediment layer is the top wall.) 

The inviscid interior equations, [3.1], [3.2] with E ~ 0 can now be solved in each region 
and the solutions joined properly across the kinematic shock. The motion of this shock 
perpendicular to itself is examined in the next section. The effects of tangential and normal 
movement can be considered separately because "steady" Ekman layers were assumed to 
form instantly on all surfaces. In terms-of thegeometrical factors 

N - ( 1  +S,2) 1/2, N r -  [1 + ( f ' ( r ) )2 ]  m ,  N a =  [1 + (g'(r))2] I/2, [3.10] 

and normal vectors, n - S,P - k, nr - - f ' ( r ) P  + it, nB - - g ' ( r ) P  - [c the following results 
are obtained. The velocity components, in cylindrical coordinates, are 

U I ~ - -  UII ~ 0 ,  

ra  N~/2 ra #1/2N~2 
o, = - + N v , ,  = 2f3  + 

[3.111 

[3.12] 
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Figure 3. The Ekman layers at walls and interfaces showing directions of flow and mass transport. 
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Et/Zlz'/2a 0 { r~(NrNn) '/2 ] 
wI = WII 413 r Or k lz ' / 2---N lr/---2 + "~1o/ 2 ) " [3.13] 

Relative to the container, the regions o f  the mixture  and purified f lu id  have retrograde and 
prograde rotations, respectively. 

Calculations of the normalized outward mass transports in the four Ekman layers Q = 
Q/21rrE i/2 yield 

~, "'/2Nlr/2v' ~2 = U '/2N'/2ra _ _ NIn/2v,i [3.141 
2 ' 4/3(#1/2+ 1) Q~' Q' ~ '  

and the flux at the shock z = S(r ,  t) is given by 

= EI/2M = - q  • h El/2#'/2a 0 [ .  r2(NrNB)l_f~/~ r2N'/2 I 
413Nr Or ~tzS/2N~2 + N g  2 + 1 + -ffi72]" 

According to [3.9], the interface rotates with velocity 

[3.151 

u'/2v, + v, ,~ = ra tz '/z N~2 - Ns/2 0. [3.16l 
V~ = #~/2 + 1 2B tfl/2 + 1 U~/2N~ 2 + N 1/2 

The vertical component of=velocity is directed from the purified fluid to the mixture and 
were the interface itself not moving slowly, the Ekman layers would actually tend to mix  the 
fluid. This implies that ce~ifugal -separa t ion in steady-state processing involving fluid 
layers could not occur if the rotational boundary layers in every region were exceptionally 
thin. The boundary layer assumptions must then be invalid somewhare in such devices, in at 
least one of the liquid regions where shear stresses are important thoughout. There the 
Ekman layers must actually overlap to an extent so that shear counteracts the Coriolis force. 
The diminution of the Coriolis force by shear stresses, or physical barriers Greenspan & 
Ungarish (I 984), is important for efficient separation. Certain centrifuges utilize many very 
closely spaced plates so that the Ekman number based on gap height is never "large" in an 
asymptotic sense. Analysis of separating flows in such configurations, Carlsson (1979), 
treats the full equations of motion in circumstances when the boundary layers in one domain 
substantially overlap or even merge into a Couette-type flow. 

Since u = 0(~) and 

un = u + a - - u R 1  + [3.17] 

it follows that uo = uR + 0(~). This shows that there is very little enhancement of settling 
velocity caused by geometry and implies that the pure fluid layer on the wall from which 
particles are removed does not remain thin during separation. When the Coriolis force is 
dominant, there is essentially no Boycott effect in a centrifigual force field like that observed 
in ordinary gravitational settling. 

4. MOTION OF THE INTERFACE 

The interface between purified fluid and mixture 

z = S(r ,  t) [4.1] 

consists of those particles that were originally on the wall of the container. (The particle is 
actually an infinitesimal element of the dispersed phase continuum.) Therefore 

wn = S.uo + S, [4.2] 
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or equivalently 

where 

S, + n • qo f f i  0 [4.3] 

n ffi S t ? "  - -  k ffi S ? l  = (1  "4- S 2 ) ' / 2 h .  [4.4] 

Obviously, the velocity of this surface is the same as the particle velocity of the dispersed 
phase, U ffi qo. In particular the position of the surface is determined by the normal 
component of velocity 

~ = h .  U f f i h . q D ,  [4.5] 

which is calculated from the kinematic shock conditions across S. Conservation of mass 
requires that the normal fluxes on the plus and minus sides of the discontinuity be related 
by 

and 

(1 - a ) ( q c  - u )  • h i  + _ = o,  ~(q~, - u )  • ~]  +_ = 0 ,  

] • h]_+ •o 

where j is defined in [2.7]. Since by defi-nition- 

qo ffi q + (1 - a)rD(a)~', qc = q - arD(a)~, 

these relations, with that for the normal flux across the interface given by [3.15] 

q . hff i  - ~ = - E I I 2 M ,  

c//ffi _ g  + (1 - a ) D ( a ) r ~  • h. [4.6] 

lead to the equation 

In addition, some other important values on the plus and minus sides of the surface are 

(qc" h)+ = - ~  - aD(ct )r?  • h, (qc" h)_ = - ~ ,  (qo • n)+ ffi "//. 

Relative to the front, fluid crosses the shock and slows. 
According to [4.6], geometrical effects do increase the velocity of the interface by the 

magnitude of the normal flux ~. However, since ,i ~ ffi O(Etl2ot/l~), which has been assumed 
small in this analysis to apply boundary layer theory, enhancement is likewise small 
compared to the centrifugal settling speed. Thus, no significant Boycott effect exists in 
axisymmetric containers, a conclusion consistent with earlier work of Greenspan & 
Ungarish (1984). 

The full equation for the position of the interface is 

~ l / ~ N ~  2 + - 0, [4.7] 413r Or L + N~/z  1 + #t/z] 

where 

s ,  + ( l  - a ) o ( ~ ) r S ,  

a, = -2a (1  -- a)D(a) .  [4.8] 
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The surface is essentially the same as that obtained by ignoring the enhancement term in 
[4.7]. However, as/3 decreases so does the radial velocity of a particle, although its azimuthal 
and axial velocity components remain 0 ( a0  and O(a~E1/2), respectively. Thus as particle size 
decreases, enhancement due to the axial velocity assumes more importance in [4.7]. It is 
therefore of interest to test the range of validity of the analysis and to consider small but not 
negligible values of EI/2/~ which are certainly attainable experimentally. For the special 
case of conical boundaries where Nr  and NB are both constants, the preceding equation can 
be solved exactly by writing 

S(r ,  t) = A ( t )  + rB( t ) ,  [4.91 

i.e. the interface is also a cone. It follows that 

A' ( t )  
E1/2l~1/2 [ (NTI~B) 112 N 1/2 ] 

2B a|,.l/2a--UTTi ~-~1/2  + , [4.10] 
L ~" , , r  ~ , , n  l + # l / 2 J  

, , / a ( t )  [4.11 ] B ( t )  = B(O) ~/o~(0)  ' 

with 

: N = [1 + B2(t)] ~/2. 

Initially the interface and the-inner wall of the container are the same and this sets the values 
of A (0), B(0). Numerical integration of [4.8] and [4.10] for any drag law gives the complete 
solution. For dilute mixtures a -=- a(0)e -2' and u(a)  --- 1, analytical expressions can be 
obtained: 

B ( t )  = B(0)e - '  = b e '  

A ( t )  E1/2a(O) [.(1 - e -2 ' ) (NrNn)  t/~ 
413 L -~TT -~ ~ * T  m tvB 

+ ~-i2 {(1 + b2) 5/4 - (1 + b2e-2')5/4}]j + A(O). 

A slightly, but perhaps measurably faster conical shock is predicted in all cases. The locus of 
the interface in containers of more general shape can be obtained using perturbation 
methods. 

5. MODERATE SETTLING RATES 

A similar analysis can be performed in the parameter range 

e = c E 5 / 2  

with c = 0(1). The principal terms in the radial and axial momentum equations are, as in the 
previous case, 

1 Ov I Ov n 
v,t -- v, = ~ e~r, cg---z = Oz = 0 '  [5  1] 

while for the azimuthal balance 

cEl/213 0z)I + 2ul = 0, 
- Ot 

[5.2] 
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i/2 dVu 
cE ~ - ~ -  + 2Ull = 0. [5.3] 

The treatment of the shear layers poses several difficulties. First of all, nonlinear terms occur 
in a formal expansion procedure. However, experience with homogeneous rotating fluids 
indicates that good qualitative results can be obtained by using the equivalent Ekman 
"suction" boundary conditions as given by the linear theory. Secondly, the difference 
between mass and volume velocities, q and j, which is an 0(E) quantity, is no longer negligible. 
This requires careful reconsideration of the boundary conditions, especially for h • q. 
Moreover, a formula for the relative velocity qR in the shear layer is needed. Since the radial 
pressure gradient is unaffected in these layers, [3.4] seems a reasonable approximation, 
provided the particles are small, i.e. B << 1. It is assumed that the sediment on z = f ( r )  is 
motionless and thin, in which case the boundary conditions there are j • h = 0 and h x 
(h x q) = 0. Finally, the Ekman layer suction at this boundary is [3.7] with 

EI/2M r = -~c~(1 - a)D(ct)r? . hr. 

Although the mass and volume fluxes across the interface z = S ( r ,  t) are obviously 
continuous functions, the mass velocity is not. This implies that - E t / 2 M  and - E ~ / 2 M  + 

ca(1 - a)D(a ) r~  • h must be used in [3.7] for the Ekman layers adjoining the interface, i.e. 
on the pure fluid and mixture sides, respectively. 

The volume transport in an Ekmantayer  is now 

Q = - I r rEr /21h  -f¢ 1 I/2 (v - Vw" 0), [5.4] 

where E is based on the appropriate viscosity and the positive direction is toward the 
periphery. It follows that, again, Q2 + Q3 = 0. 

An appropriate matching of regions I and II using the total volume flux balance 

QI + Q2+ Q3 + Q4+ 2 ~ r r f : "  g l  • ~ d r  = 0, 

yields the equation for the azimuthal motion, 

HcO_--- + + + Hct~ - o~(1 - ~ )O(o~) ,  [5.51 
2 

where ~oi = Bvl/r,  H ~ f  + g, HI = f  - S.  
The last term couples this equation to that for S(r ,  t) ,  which is obtained as in section 4 

but with the appropriate value of M used: 

S t Jl- ( 1  - o l ) D ( o l ) r S  r - - ~ r ' ~ r - L i \ |  ..t_ ~.£1/2 -Ji- N 1/2 dr- N1/2601 

+ -- --~---  - -  0. [5.6] 

Initially, S(r ,  O) = - g ( r )  and O~l = 0; all other variables can be obtained from o~ and S. 
Equation [5.5] clearly points out the importance of the parameter ~ = (hc~) -~ = 

(E  ~/2/H ] e [/3) which is the ratio of the settling and spin-up times. For ;k large the process is 
dominated by the Ekman layers, while in the opposite case separation prevails. In any event, 
however, the radial velocity of the mixture in the core is small, 0(e). The equations reduce 
correctly in the special cases c = 0, or a ~ 0 and, for c large, give the correct formula for the 
residual retrograde rotation in rapid settling. However, this direction will not be pursued 
further at this time. 
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6. C O N C L U S I O N S  

Analysis of viscous effects on the centrifugal settling of a uniform batch mixture shows 
that when the Coriolis force is important, geometry can have only a minor influence in 
accelerating the process. Conversely, enhanced settling due to changes of geometry, a 
Boycott effect, is made possible by diminishing the Coriolis force. In practice this is 
accomplished by using a disk stack with a small gap thickness so that the shear forces are 
everywhere important, or by blocking the flow with meridional sections, Greenspan & 
Ungarish (1985). 

Some of the theoretical results--the occurrence of Ekman layers and the mass transports 
within them, the retrograde and prograde rotations of the mixture and pure fluid, and the 
locus of the interface between mixture and pure fluid--make for a relatively easy and 
different experimental assessment of the mixture equations. 

Mixture theory, in which there are three distinct regions--sediment, mixture and 
purified fluid--separated by kinematic shocks, is at present a most practical framework for 
the study of multiphase fluid dynamics in which shear stresses and wall effects are 
important. The problems are rendered solvable, the results seem consistent with observation 
and some of the intrinsic difficulties of two phase flow theory are avoided [Carlsson (1979), 
Probstein et al. (1977), Acrivos & Herbolzheimer (1979), Bark & Johansson (1982)]. 
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APPENDIX 

The results for negative buoyancy, po -< Pc are summarized here. The geometry is the 
same but now the lighter particles move away from the top surface z = f, and sediment is 
formed on the bottom wall z = -g ,  figure 4. Again, subscripts I and II denote the mixture 
and pure fluid regions. 

In this case, 

qR = -r D(a)~, [A.I] 

da 
- -  = 2c~(1 - a )  D ( a ) ,  [ A . 2 ]  
d t  

1 
U I - -  Oil = " ~  o l r ,  [ A . 3 ]  
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Figure 4. Separation of a mixture of light particles, oo < Po 

Vw = V,,, • 0 = #l/2vI + vii 
1 + #i/2 

#1/2 1 

Vll - V,.== 1 + ~1/', 213 dr ,  

- d r  ( u N )  |/2 

Q2 =--- Q3 4131 + #i/ , ,  

and 

St + (1 - a)  D(o t ) r  S,. - N E  1/2 M = O. 

Moreover  for c = 0, with R ~ Ntr  n + # l n  N~/2, it follows that  

U 1 = Ull = 0 

otr N ~  2 otr ( u N n )  I/2 

v i = 2 1 3  R ' vll 213 R 

EII2uII:' 0 ., ( N r N n )  In 

Wl = Wll 413r a drr r R 

- -  c~r ( # N r N n )  I/2 
QI = - Q4 = 

413 R 

d r  i~ 1/2 N ~  2 - Nta/2 
Vw=-- 

213 1 + / 1  I/~' R 

and 

Ell" ~ ' /210r2  [ N I l  ~ ( N ~ n )  '/2] 
Et/2  M = - - 4 ~ - ° t  N r Or [1 + #  1/2+ 

[A.4I 

[A.S] 

[A.6I 

[A.7] 

[A.8] 

[A.9] 

IA.10] 

[A . I I ]  

[A.12] 

[A.13] 


